jimi
Well-Known Member
Gravity is weaker at lower latitudes for two reasons.
The first is that in a rotating non-inertial or accelerated reference frame, as is the case on the surface of the Earth, there appears a 'fictitious' centrifugal force acting in a direction perpendicular to the axis of rotation. The gravitational force on a body is partially offset by this centrifugal force, reducing its weight. This effect is smallest at the poles, where the gravitational force and the centrifugal force are orthogonal, and largest at the equator. This effect on its own would result in a range of values of g from 9.789 m·s−2 at the equator to 9.832 m·s−2 at the poles.
The second reason is that the Earth's equatorial bulge (itself also caused by centrifugal force), causes objects at the equator to be farther from the planet's centre than objects at the poles. Because the force due to gravitational attraction between two bodies (the Earth and the object being weighed) varies inversely with the square of the distance between them, objects at the equator experience a weaker gravitational pull than objects at the poles.
In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object will weigh about 0.5% more at the poles than at the equator
That explains a lot!
The first is that in a rotating non-inertial or accelerated reference frame, as is the case on the surface of the Earth, there appears a 'fictitious' centrifugal force acting in a direction perpendicular to the axis of rotation. The gravitational force on a body is partially offset by this centrifugal force, reducing its weight. This effect is smallest at the poles, where the gravitational force and the centrifugal force are orthogonal, and largest at the equator. This effect on its own would result in a range of values of g from 9.789 m·s−2 at the equator to 9.832 m·s−2 at the poles.
The second reason is that the Earth's equatorial bulge (itself also caused by centrifugal force), causes objects at the equator to be farther from the planet's centre than objects at the poles. Because the force due to gravitational attraction between two bodies (the Earth and the object being weighed) varies inversely with the square of the distance between them, objects at the equator experience a weaker gravitational pull than objects at the poles.
In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object will weigh about 0.5% more at the poles than at the equator
That explains a lot!